If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6u^2+13u+7=0
a = 6; b = 13; c = +7;
Δ = b2-4ac
Δ = 132-4·6·7
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-1}{2*6}=\frac{-14}{12} =-1+1/6 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+1}{2*6}=\frac{-12}{12} =-1 $
| 216=6(1-7n) | | 8x-16=3x-20 | | 4{2(x+3)+7}-5x=61 | | 2(7m+2)=116 | | 5x+3x=50.50=2x+6x=31.00 | | 2(v+8)=-3v+11 | | X-4(x+4)=-3(x+1)+1 | | 5n+6=3 | | -128=-8b-4(3b-8) | | X+√x=36 | | -3(-2)=2u-34 | | 3+5n=-1+3n | | 3s+5=280 | | 3(x-1)=x+2(x+1)1 | | 3s+5=10 | | -8u+40=-5(u-5) | | 1-r=-16+1-7r-2r | | -2-11=4x+14-3 | | 9/4x=11/4 | | 3(4y+1)=15 | | 5x-5x=6-3x | | -2(x+9)=-8x+18 | | 8x/3-5=19 | | 6x-7=9-2x | | 1-4b-b=7-4b | | 7(m+55)=63 | | 11(-2)+4y=-46 | | 5n-6=-10+4n | | 3(5-2x)=2(5x+1) | | 18n-(3n+4)=11 | | 5m+7-3=19 | | 20=-6x+7+1 |